KayYen Wong


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Contextual Neural Machine Translation Improves Translation of Cataphoric Pronouns
KayYen Wong | Sameen Maruf | Gholamreza Haffari
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The advent of context-aware NMT has resulted in promising improvements in the overall translation quality and specifically in the translation of discourse phenomena such as pronouns. Previous works have mainly focused on the use of past sentences as context with a focus on anaphora translation. In this work, we investigate the effect of future sentences as context by comparing the performance of a contextual NMT model trained with the future context to the one trained with the past context. Our experiments and evaluation, using generic and pronoun-focused automatic metrics, show that the use of future context not only achieves significant improvements over the context-agnostic Transformer, but also demonstrates comparable and in some cases improved performance over its counterpart trained on past context. We also perform an evaluation on a targeted cataphora test suite and report significant gains over the context-agnostic Transformer in terms of BLEU.