Kaushik Gedela


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
QA4IE: A Quality Assurance Tool for Information Extraction
Rafael Jimenez Silva | Kaushik Gedela | Alex Marr | Bart Desmet | Carolyn Rose | Chunxiao Zhou
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Quality assurance (QA) is an essential though underdeveloped part of the data annotation process. Although QA is supported to some extent in existing annotation tools, comprehensive support for QA is not standardly provided. In this paper we contribute QA4IE, a comprehensive QA tool for information extraction, which can (1) detect potential problems in text annotations in a timely manner, (2) accurately assess the quality of annotations, (3) visually display and summarize annotation discrepancies among annotation team members, (4) provide a comprehensive statistics report, and (5) support viewing of annotated documents interactively. This paper offers a competitive analysis comparing QA4IE and other popular annotation tools and demonstrates its features, usage, and effectiveness through a case study. The Python code, documentation, and demonstration video are available publicly at https://github.com/CC-RMD-EpiBio/QA4IE.