Katrina Langford


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Low-Resource Machine Translation through Retrieval-Augmented LLM Prompting: A Study on the Mambai Language
Raphaël Merx | Aso Mahmudi | Katrina Langford | Leo Alberto de Araujo | Ekaterina Vylomova
Proceedings of the 2nd Workshop on Resources and Technologies for Indigenous, Endangered and Lesser-resourced Languages in Eurasia (EURALI) @ LREC-COLING 2024

This study explores the use of large language models (LLMs) for translating English into Mambai, a low-resource Austronesian language spoken in Timor-Leste, with approximately 200,000 native speakers. Leveraging a novel corpus derived from a Mambai language manual and additional sentences translated by a native speaker, we examine the efficacy of few-shot LLM prompting for machine translation (MT) in this low-resource context. Our methodology involves the strategic selection of parallel sentences and dictionary entries for prompting, aiming to enhance translation accuracy, using open-source and proprietary LLMs (LlaMa 2 70b, Mixtral 8x7B, GPT-4). We find that including dictionary entries in prompts and a mix of sentences retrieved through TF-IDF and semantic embeddings significantly improves translation quality. However, our findings reveal stark disparities in translation performance across test sets, with BLEU scores reaching as high as 21.2 on materials from the language manual, in contrast to a maximum of 4.4 on a test set provided by a native speaker. These results underscore the importance of diverse and representative corpora in assessing MT for low-resource languages. Our research provides insights into few-shot LLM prompting for low-resource MT, and makes available an initial corpus for the Mambai language.