Kathryn Mazaitis


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text
Haitian Sun | Bhuwan Dhingra | Manzil Zaheer | Kathryn Mazaitis | Ruslan Salakhutdinov | William Cohen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Open Domain Question Answering (QA) is evolving from complex pipelined systems to end-to-end deep neural networks. Specialized neural models have been developed for extracting answers from either text alone or Knowledge Bases (KBs) alone. In this paper we look at a more practical setting, namely QA over the combination of a KB and entity-linked text, which is appropriate when an incomplete KB is available with a large text corpus. Building on recent advances in graph representation learning we propose a novel model, GRAFT-Net, for extracting answers from a question-specific subgraph containing text and KB entities and relations. We construct a suite of benchmark tasks for this problem, varying the difficulty of questions, the amount of training data, and KB completeness. We show that GRAFT-Net is competitive with the state-of-the-art when tested using either KBs or text alone, and vastly outperforms existing methods in the combined setting.

2014

pdf bib
Dependency Parsing for Weibo: An Efficient Probabilistic Logic Programming Approach
William Yang Wang | Lingpeng Kong | Kathryn Mazaitis | William W. Cohen
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)