This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
KathrynBaker
Also published as:
Kathryn L. Baker
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
We describe a unified and coherent syntactic framework for supporting a semantically-informed syntactic approach to statistical machine translation. Semantically enriched syntactic tags assigned to the target-language training texts improved translation quality. The resulting system significantly outperformed a linguistically naive baseline model (Hiero), and reached the highest scores yet reported on the NIST 2009 Urdu-English translation task. This finding supports the hypothesis (posed by many researchers in the MT community, e.g., in DARPA GALE) that both syntactic and semantic information are critical for improving translation quality—and further demonstrates that large gains can be achieved for low-resource languages with different word order than English.
This paper describes our resource-building results for an eight-week JHU Human Language Technology Center of Excellence Summer Camp for Applied Language Exploration (SCALE-2009) on Semantically-Informed Machine Translation. Specifically, we describe the construction of a modality annotation scheme, a modality lexicon, and two automated modality taggers that were built using the lexicon and annotation scheme. Our annotation scheme is based on identifying three components of modality: a trigger, a target and a holder. We describe how our modality lexicon was produced semi-automatically, expanding from an initial hand-selected list of modality trigger words and phrases. The resulting expanded modality lexicon is being made publicly available. We demonstrate that one tagger―a structure-based tagger―results in precision around 86% (depending on genre) for tagging of a standard LDC data set. In a machine translation application, using the structure-based tagger to annotate English modalities on an English-Urdu training corpus improved the translation quality score for Urdu by 0.3 Bleu points in the face of sparse training data.
This paper presents a source language diagnostic system for controlled translation. Diagnostics were designed and implemented to address the most difficult rewrites for authors, based on an empirical analysis of log files containing over 180,000 sentences. The design and implementation of the diagnostic system are presented, along with experimental results from an empirical evaluation of the completed system. We found that the diagnostic system can correctly identify the problem in 90.2% of the cases. In addition, depending on the type of grammar problem, the diagnostic system may offer a rewritten sentence. We found that 89.4% of the rewritten sentences were correctly rewritten. The results suggest that these methods could be used as the basis for an automatic rewriting system in the future.
This paper presents an overview of the tools provided by KANTOO MT system for controlled source language checking, source text analysis, and terminology management. The steps in each process are described, and screen images are provided to illustrate the system architecture and example tool interfaces.
This paper describes the results of a feasibility study which focused on deriving semantic networks from descriptive texts using controlled language. The KANT system [3,6] was used to analyze input paragraphs, producing sentence-level interlingua representations. The interlinguas were merged to construct a paragraph-level representation, which was used to create a semantic network in Conceptual Graph (CG) [1] format. The interlinguas are also translated (using the KANTOO generator) into OWL statements for entry into the Ontology Works electrical power factbase [9]. The system was extended to allow simple querying in natural language.
We describe the automatic resolution of pronominal anaphora using KANT Controlled English (KCE) and the KANTOO English-to-Spanish MT system. Our algorithm is based on a robust, syntax-based approach that applies a set of restrictions and preferences to select the correct antecedent. We report a success rate of 89.6% on a training corpus with 289 anaphors, and 87.5% on held-out data containing 145 anaphors. Resolution of anaphors is important in translation, due to gender mismatches among languages; our approach translates anaphors to Spanish with 97.2% accuracy.