This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Kathleen M.Carley
Also published as:
Kathleen Carley
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large Language Models (LLMs) demonstrate remarkable capabilities in question answering (QA), but metrics for assessing their reliance on memorization versus retrieval remain underdeveloped. Moreover, while finetuned models are state-of-the-art on closed-domain tasks, general-purpose models like GPT-4o exhibit strong zero-shot performance. This raises questions about the trade-offs between memorization, generalization, and retrieval. In this work, we analyze the extent to which multimodal retrieval-augmented VLMs memorize training data compared to baseline VLMs. Using the WebQA benchmark, we contrast finetuned models with baseline VLMs on multihop retrieval and question answering, examining the impact of finetuning on data memorization. To quantify memorization in end-to-end retrieval and QA systems, we propose several proxy metrics by investigating instances where QA succeeds despite retrieval failing. In line with existing work, we find that finetuned models rely more heavily on memorization than retrieval-augmented VLMs, and achieve higher accuracy as a result (72% vs 52% on WebQA test set). Finally, we present the first empirical comparison of the parametric effect between text and visual modalities. Here, we find that image-based questions have parametric response rates that are consistently 15-25% higher than for text-based questions in the WebQA dataset. As such, our measures pose a challenge for future work, both to account for differences in model memorization across different modalities and more generally to reconcile memorization and generalization in joint Retrieval-QA tasks.
We present a dataset and classifier for detecting the language of white supremacist extremism, a growing issue in online hate speech. Our weakly supervised classifier is trained on large datasets of text from explicitly white supremacist domains paired with neutral and anti-racist data from similar domains. We demonstrate that this approach improves generalization performance to new domains. Incorporating anti-racist texts as counterexamples to white supremacist language mitigates bias.
Online communities of involuntary celibates (incels) are a prominent source of misogynist hate speech. In this paper, we use quantitative text and network analysis approaches to examine how identity groups are discussed on incels.is, the largest black-pilled incels forum. We find that this community produces a wide range of novel identity terms and, while terms for women are most common, mentions of other minoritized identities are increasing. An analysis of the associations made with identity groups suggests an essentialist ideology where physical appearance, as well as gender and racial hierarchies, determine human value. We discuss implications for research into automated misogynist hate speech detection.
This paper investigates how hate speech varies in systematic ways according to the identities it targets. Across multiple hate speech datasets annotated for targeted identities, we find that classifiers trained on hate speech targeting specific identity groups struggle to generalize to other targeted identities. This provides empirical evidence for differences in hate speech by target identity; we then investigate which patterns structure this variation. We find that the targeted demographic category (e.g. gender/sexuality or race/ethnicity) appears to have a greater effect on the language of hate speech than does the relative social power of the targeted identity group. We also find that words associated with hate speech targeting specific identities often relate to stereotypes, histories of oppression, current social movements, and other social contexts specific to identities. These experiments suggest the importance of considering targeted identity, as well as the social contexts associated with these identities, in automated hate speech classification
Accurate estimation of user location is important for many online services. Previous neural network based methods largely ignore the hierarchical structure among locations. In this paper, we propose a hierarchical location prediction neural network for Twitter user geolocation. Our model first predicts the home country for a user, then uses the country result to guide the city-level prediction. In addition, we employ a character-aware word embedding layer to overcome the noisy information in tweets. With the feature fusion layer, our model can accommodate various feature combinations and achieves state-of-the-art results over three commonly used benchmarks under different feature settings. It not only improves the prediction accuracy but also greatly reduces the mean error distance.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.
Learning from social-media conversations has gained significant attention recently because of its applications in areas like rumor detection. In this research, we propose a new way to represent social-media conversations as binarized constituency trees that allows comparing features in source-posts and their replies effectively. Moreover, we propose to use convolution units in Tree LSTMs that are better at learning patterns in features obtained from the source and reply posts. Our Tree LSTM models employ multi-task (stance + rumor) learning and propagate the useful stance signal up in the tree for rumor classification at the root node. The proposed models achieve state-of-the-art performance, outperforming the current best model by 12% and 15% on F1-macro for rumor-veracity classification and stance classification tasks respectively.
We introduce a novel parameterized convolutional neural network for aspect level sentiment classification. Using parameterized filters and parameterized gates, we incorporate aspect information into convolutional neural networks (CNN). Experiments demonstrate that our parameterized filters and parameterized gates effectively capture the aspect-specific features, and our CNN-based models achieve excellent results on SemEval 2014 datasets.