Kateryna Haidarzhyi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
A Contemporary News Corpus of Ukrainian (CNC-UA): Compilation, Annotation, Publication
Stefan Fischer | Kateryna Haidarzhyi | Jörg Knappen | Olha Polishchuk | Yuliya Stodolinska | Elke Teich
Proceedings of the Third Ukrainian Natural Language Processing Workshop (UNLP) @ LREC-COLING 2024

We present a corpus of contemporary Ukrainian news articles published between 2019 and 2022 on the news website of the national public broadcaster of Ukraine, commonly known as SUSPILNE. The current release comprises 87 210 364 words in 292 955 texts. Texts are annotated with titles and their time of publication. In addition, the corpus has been linguistically annotated at the token level with a dependency parser. To provide further aspects for investigation, a topic model was trained on the corpus. The corpus is hosted (Fischer et al., 2023) at the Saarbrücken CLARIN center under a CC BY-NC-ND 4.0 license and available in two tab-separated formats: CoNLL-U (de Marneffe et al., 2021) and vertical text format (VRT) as used by the IMS Open Corpus Workbench (CWB; Evert and Hardie, 2011) and CQPweb (Hardie, 2012). We show examples of using the CQPweb interface, which allows to extract the quantitative data necessary for distributional and collocation analyses of the CNC-UA. As the CNC-UA contains news texts documenting recent events, it is highly relevant not only for linguistic analyses of the modern Ukrainian language but also for socio-cultural and political studies.