This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
KateSanders
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Hallucinations pose a challenge to the application of large language models (LLMs) thereby motivating the development of metrics to evaluate factual precision. We observe that popular metrics using the Decompose-Then-Verify framework, such as FActScore, can be manipulated by adding obvious or repetitive subclaims to artificially inflate scores. This observation motivates our new customizable plug-and-play subclaim selection component called Core, which filters down individual subclaims according to their uniqueness and informativeness. We show that many popular factual precision metrics augmented by Core are substantially more robust on a wide range of knowledge domains. We release an evaluation framework supporting easy and modular use of Core and various decomposition strategies, which we recommend adoption by the community. We also release an expansion of the FActScore biography dataset to facilitate further studies of decomposition-based factual precision evaluation.
A core part of scientific peer review involves providing expert critiques that directly assess the scientific claims a paper makes. While it is now possible to automatically generate plausible (if generic) reviews, ensuring that these reviews are sound and grounded in the papers’ claims remains challenging. To facilitate LLM benchmarking on these challenges, we introduce CLAIMCHECK, an annotated dataset of NeurIPS 2023 and 2024 submissions and reviews mined from OpenReview. CLAIMCHECK is richly annotated by ML experts for weakness statements in the reviews and the paper claims that they dispute, as well as fine-grained labels of the validity, objectivity, and type of the identified weaknesses. We benchmark several LLMs on three claim-centric tasks supported by CLAIMCHECK, requiring models to (1) associate weaknesses with the claims they dispute, (2) predict fine-grained labels for weaknesses and rewrite the weaknesses to enhance their specificity, and (3) verify a paper’s claims with grounded reasoning. Our experiments reveal that cutting-edge LLMs, while capable of predicting weakness labels in (2), continue to underperform relative to human experts on all other tasks.
Despite recent advancements in neural retrieval, representing text fragments or phrases with proper contextualized embeddings is still challenging. Particularly in video retrieval, where documents are text extracted through OCR from the frames or ASR from audio tracks, the textual content is rarely complete sentences but only a bag of phrases. In this work, we propose FORTIFY, a generative model fine-tuning approach for noisy document rewriting and summarization, to improve the downstream retrieval effectiveness. By experimenting on MultiVENT 2.0, an informational video retrieval benchmark, we show Llama fine-tuned with FORTIFY provides an effective document expansion, leading to a 30% improvement over prompting an out-of-box Llama model on nDCG@10. Zero-shot transferring the model tailored for MultiVENT 2.0 to two out-of-distribution datasets still demonstrates competitive retrieval effectiveness to other document preprocessing alternatives.
Can advanced multi-modal models effectively tackle complex web-based tasks? Such tasks are often found on crowdsourcing platforms, where crowdworkers engage in challenging micro-tasks within web-based environments.Building on this idea, we present TurkingBench, a benchmark consisting of tasks presented as web pages with textual instructions and multi-modal contexts. Unlike previous approaches that rely on artificially synthesized web pages, our benchmark uses natural HTML pages originally designed for crowdsourcing workers to perform various annotation tasks. Each task’s HTML instructions are instantiated with different values derived from crowdsourcing tasks, creating diverse instances. This benchmark includes 32.2K instances spread across 158 tasks.To support the evaluation of TurkingBench, we have developed a framework that links chatbot responses to actions on web pages (e.g., modifying a text box, selecting a radio button). We assess the performance of cutting-edge private and open-source models, including language-only and vision-language models (such as GPT4 and InternVL), on this benchmark. Our results show that while these models outperform random chance, there is still significant room for improvement. We hope that this benchmark will drive progress in the evaluation and development of web-based agents.
Recent language models enable new opportunities for structured reasoning with text, such as the construction of intuitive, proof-like textual entailment trees without relying on brittle formal logic. However, progress in this direction has been hampered by a long-standing lack of a clear protocol for determining what _valid decompositional entailment_ is. This absence causes noisy datasets and limited performance gains by modern neuro-symbolic entailment engines. To address these problems, we formulate a consistent and theoretically grounded approach to annotating decompositional entailment and evaluate its impact on LLM-based textual inference. We find that our new dataset, RDTE (Recognizing Decompositional Textual Entailment), has a substantially higher internal consistency than prior decompositional entailment datasets, suggesting that RDTE is a significant step forward in the long-standing problem of forming a clear protocol for discerning entailment. We also find that training an RDTE-oriented entailment classifier via knowledge distillation and employing it in an entailment tree reasoning engine significantly improves both accuracy and proof quality, illustrating the practical benefit of this advance for textual inference.
It is challenging for models to understand complex, multimodal content such as television clips, and this is in part because video-language models often rely on single-modality reasoning and lack interpretability. To combat these issues we propose TV-TREES, the first multimodal entailment tree generator. TV-TREES serves as an approach to video understanding that promotes interpretable joint-modality reasoning by searching for trees of entailment relationships between simple text-video evidence and higher-level conclusions that prove question-answer pairs. We also introduce the task of multimodal entailment tree generation to evaluate reasoning quality. Our method’s performance on the challenging TVQA benchmark demonstrates interpretable, state-of-the-art zero-shot performance on full clips, illustrating that multimodal entailment tree generation can be a best-of-both-worlds alternative to black-box systems.
How are we able to learn about complex current events just from short snippets of video? While natural language enables straightforward ways to represent under-specified, partially observable events, visual data does not facilitate analogous methods and, consequently, introduces unique challenges in event understanding. With the growing prevalence of vision-capable AI agents, these systems must be able to model events from collections of unstructured video data. To tackle robust event modeling in multimodal settings, we introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task. We propose a corresponding benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities. We propose a collection of LLM-driven approaches to the task of multimodal event analysis, and evaluate them on MultiVENT-G. Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.