This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
KateKnill
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The combination of pre-trained speech encoders with large language models has enabled the development of speech LLMs that can handle a wide range of spoken language processing tasks. While these models are powerful and flexible, this very flexibility may make them more vulnerable to adversarial attacks. To examine the extent of this problem, in this work we investigate universal acoustic adversarial attacks on speech LLMs. Here a fixed, universal, adversarial audio segment is prepended to the original input audio. We initially investigate attacks that cause the model to either produce no output or to perform a modified task overriding the original prompt. We then extend the nature of the attack to be selective so that it activates only when specific input attributes, such as a speaker gender or spoken language, are present. Inputs without the targeted attribute should be unaffected, allowing fine-grained control over the model outputs. Our findings reveal critical vulnerabilities in Qwen2-Audio and Granite-Speech and suggest that similar speech LLMs may be susceptible to universal adversarial attacks. This highlights the need for more robust training strategies and improved resistance to adversarial attacks.
Chain-of-Thought (CoT) prompting is a widely used method to improve the reasoning capability of Large Language Models (LLMs). More recently, CoT has been leveraged in Knowledge Distillation (KD) to transfer reasoning capability from a larger LLM to a smaller one. This paper examines the role of CoT in distilling the reasoning capability from larger LLMs to smaller LLMs using white-box KD, analyzing its effectiveness in improving the performance of the distilled models for various natural language reasoning and understanding tasks. We conduct white-box KD experiments using LLMs from the Qwen and Llama2 families, employing CoT data from the CoT-Collection dataset. The distilled models are then evaluated on natural language reasoning and understanding tasks from the BIG-Bench-Hard (BBH) benchmark, which presents complex challenges for smaller LLMs. Experimental results demonstrate the role of CoT in improving white-box KD effectiveness, enabling the distilled models to achieve better average performance in natural language reasoning and understanding tasks from BBH.
There has been increasing interest in building multilingual foundation models for NLP and speech research. This paper examines how to expand the speech translation capability of these models with restricted data. Whisper, a speech foundation model with strong performance on speech recognition and English translation, is used as the example model. Using speech-to-speech retrieval to analyse the audio representations generated by the encoder, we show that utterances from different languages are mapped to a shared semantic space. This shared embedding space can then be leveraged for zero-shot cross-lingual transfer in speech translation. By fine-tuning the Whisper decoder with only English-to-Chinese speech translation data, improved performance for translation to Chinese can be obtained for multiple languages, in addition to English. Furthermore, for languages related to those seen in training it is possible to perform speech translation, despite the model never seeing the language in training, or being able to perform transcription.
Text and vision foundation models can perform many tasks in a zero-shot setting, a desirable property that enables these systems to be applied in general and low-resource settings. There has been far less work, however, on the zero-shot abilities of ASR foundation models, with these systems typically fine-tuned to specific tasks or constrained to applications that match their training criterion and data annotation. In this work we investigate the ability of Whisper and MMS, ASR foundation models trained primarily for speech recognition, to perform zero-shot audio classification. We use simple template-based text prompts at the decoder and use the resulting decoding probabilities to generate zero-shot predictions. Without training the model on extra data or adding any new parameters, we demonstrate that Whisper shows promising zero-shot classification performance on a range of 8 audio-classification datasets, outperforming the accuracy of existing state-of-the-art zero-shot baselines by an average of 9%. One important step to unlock the emergent ability is debiasing, where a simple unsupervised reweighting method of the class probabilities yields consistent significant performance gains. We further show that performance increases with model size, implying that as ASR foundation models scale up, they may exhibit improved zero-shot performance.
Increased demand to learn English for business and education has led to growing interest in automatic spoken language assessment and teaching systems. With this shift to automated approaches it is important that systems reliably assess all aspects of a candidate’s responses. This paper examines one form of spoken language assessment; whether the response from the candidate is relevant to the prompt provided. This will be referred to as off-topic spoken response detection. Two forms of previously proposed approaches are examined in this work: the hierarchical attention-based topic model (HATM); and the similarity grid model (SGM). The work focuses on the scenario when the prompt, and associated responses, have not been seen in the training data, enabling the system to be applied to new test scripts without the need to collect data or retrain the model. To improve the performance of the systems for unseen prompts, data augmentation based on easy data augmentation (EDA) and translation based approaches are applied. Additionally for the HATM, a form of prompt dropout is described. The systems were evaluated on both seen and unseen prompts from Linguaskill Business and General English tests. For unseen data the performance of the HATM was improved using data augmentation, in contrast to the SGM where no gains were obtained. The two approaches were found to be complementary to one another, yielding a combined F0.5 score of 0.814 for off-topic response detection where the prompts have not been seen in training.
We describe the collection of transcription corrections and grammatical error annotations for the CrowdED Corpus of spoken English monologues on business topics. The corpus recordings were crowdsourced from native speakers of English and learners of English with German as their first language. The new transcriptions and annotations are obtained from different crowdworkers: we analyse the 1108 new crowdworker submissions and propose that they can be used for automatic transcription post-editing and grammatical error correction for speech. To further explore the data we train grammatical error detection models with various configurations including pre-trained and contextual word representations as input, additional features and auxiliary objectives, and extra training data from written error-annotated corpora. We find that a model concatenating pre-trained and contextual word representations as input performs best, and that additional information does not lead to further performance gains.
There is a growing demand for automatic assessment of spoken English proficiency. These systems need to handle large variations in input data owing to the wide range of candidate skill levels and L1s, and errors from ASR. Some candidates will be a poor match to the training data set, undermining the validity of the predicted grade. For high stakes tests it is essential for such systems not only to grade well, but also to provide a measure of their uncertainty in their predictions, enabling rejection to human graders. Previous work examined Gaussian Process (GP) graders which, though successful, do not scale well with large data sets. Deep Neural Network (DNN) may also be used to provide uncertainty using Monte-Carlo Dropout (MCD). This paper proposes a novel method to yield uncertainty and compares it to GPs and DNNs with MCD. The proposed approach explicitly teaches a DNN to have low uncertainty on training data and high uncertainty on generated artificial data. On experiments conducted on data from the Business Language Testing Service (BULATS), the proposed approach is found to outperform GPs and DNNs with MCD in uncertainty-based rejection whilst achieving comparable grading performance.