Karol Wieloch


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2007

pdf bib
Unsupervised Methods of Topical Text Segmentation for Polish
Dominik Flejter | Karol Wieloch | Witold Abramowicz
Proceedings of the Workshop on Balto-Slavonic Natural Language Processing

2006

pdf bib
Linguistic Suite for Polish Cadastral System
Witold Abramowicz | Agata Filipowska | Jakub Piskorski | Krzysztof Węcel | Karol Wieloch
Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)

This paper reports on an endeavour of creating basic linguistic resources for geo-referencing of Polish free-text documents. We have defined a fine-grained named entity hierarchy, produced an exhaustive gazetteer, and developed named-entity grammars for Polish. Additionally, an annotated corpus for the cadastral domain was prepared for evaluation purposes. Our baseline approach to geo-referencing is based on application of aforementioned resources and a lightweight co-referencing technique which utilizes string-similarity metric of Jaro-Winkler. We carried out a detailed evaluation of detecting locations, organizations and persons, which revealed that best results are obtained via application of a combined grammar for all types. The application of lightweight co-referencing for organizations and persons improves recall but deteriorates precision, and no gain is observed for locations. The paper is accompanied by a demo, a geo-referencing application capable of: (a) finding documents and text fragments based on named entities and (b) populating the spatial ontology from texts.