Karan Nathwani


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Impact of Microphone position Measurement Error on Multi Channel Distant Speech Recognition & Intelligibility
Karan Nathwani | Sunil Kumar Kopparapu
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

It was shown in (Raikar et al., 2020) that the measurement error in the microphone position affected the room impulse response (RIR) which in turn affected the single channel speech recognition. In this paper, we ex-tend this to study the more complex and realistic scenario of multi channel distant speech recognition. Specifically we simulate m speakers in a given room with n microphones speaking without overlap. Then channel audio is beamformed and passed through a speech to text (s2t) engine. We compare the s2t accuracy when the microphone locations are known exactly (ground truth) with the s2t accuracy when there is a measurement error in the location of the microphone. We report the performance of an end-to-end s2t on beamformed input in terms of character error rate (CER) and and also speech intelligibility and quality in terms of STOI and PESQ respectively.