Kanchi Gopinath


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
A Sanskrit grammar-based approach to identify and address gaps in Google Translate’s Sanskrit-English zero-shot NMT
Amit Rao | Kanchi Gopinath
Proceedings of the 2023 CLASP Conference on Learning with Small Data (LSD)

In this work, we test the working of Google Translate’s recently introduced Sanskrit-English translation system using a relatively small set of probe test cases designed to focus on those areas that we expect, based on a knowledge of Sanskrit and English grammar, to pose a challenge for translation between Sanskrit and English. We summarize the findings that point to significant gaps in the current Zero-Shot Neural Multilingual Translation (Zero-Shot NMT) approach to Sanskrit-English translation. We then suggest an approach based on Sanskrit grammar to create a differential parallel corpus as a corrective training data to address such gaps. This approach should also generalize to other pairs of languages that have low availability of learning resources, but a good grammar theory.
Search
Co-authors
Venues
Fix data