Kaixiang Zhang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A Similarity Measure for Comparing Conversational Dynamics
Sang Min Jung | Kaixiang Zhang | Cristian Danescu-Niculescu-Mizil
Findings of the Association for Computational Linguistics: EMNLP 2025

The quality of a conversation goes beyond the individual quality of each reply, and instead emerges from how these combine into interactional dynamics that give the conversation its distinctive overall “shape”. However, there is no robust automated method for comparing conversations in terms of their overall dynamics. Such methods could enhance the analysis of conversational data and help evaluate conversational agents more holistically.In this work, we introduce a similarity measure for comparing conversations with respect to their dynamics. We design a validation procedure for testing the robustness of the metric in capturing differences in conversation dynamics and for assessing its sensitivity to the topic of the conversations. To illustrate the measure’s utility, we use it to analyze conversational dynamics in a large online community, bringing new insights into the role of situational power in conversations.