Kai Ishikawa


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2013

pdf bib
Chinese Informal Word Normalization: an Experimental Study
Aobo Wang | Min-Yen Kan | Daniel Andrade | Takashi Onishi | Kai Ishikawa
Proceedings of the Sixth International Joint Conference on Natural Language Processing

pdf bib
Synonym Acquisition Using Bilingual Comparable Corpora
Daniel Andrade | Masaaki Tsuchida | Takashi Onishi | Kai Ishikawa
Proceedings of the Sixth International Joint Conference on Natural Language Processing

pdf bib
Translation Acquisition Using Synonym Sets
Daniel Andrade | Masaaki Tsuchida | Takashi Onishi | Kai Ishikawa
Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2011

pdf bib
Extractive Summarization Method for Contact Center Dialogues based on Call Logs
Akihiro Tamura | Kai Ishikawa | Masahiro Saikou | Masaaki Tsuchida
Proceedings of 5th International Joint Conference on Natural Language Processing

2006

pdf bib
Chinese Speech Information Retrieval for Questions on Mobile Phone Operation
Kai Ishikawa | Susumu Akamine | Ken Hanazawa
Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation

1999

pdf bib
Solutions to problems inherent in spoken-language translation: the ATR-MATRIX approach
Eiichiro Sumita | Setsuo Yamada | Kazuhide Yamamoto | Michael Paul | Hideki Kashioka | Kai Ishikawa | Satoshi Shirai
Proceedings of Machine Translation Summit VII

ATR has built a multi-language speech translation system called ATR-MATRIX. It consists of a spoken-language translation subsystem, which is the focus of this paper, together with a highly accurate speech recognition subsystem and a high-definition speech synthesis subsystem. This paper gives a road map of solutions to the problems inherent in spoken-language translation. Spoken-language translation systems need to tackle difficult problems such as ungrammaticality. contextual phenomena, speech recognition errors, and the high-speeds required for real-time use. We have made great strides towards solving these problems in recent years. Our approach mainly uses an example-based translation model called TDMT. We have added the use of extra-linguistic information, a decision tree learning mechanism, and methods dealing with recognition errors.