Kai-Chun Liao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Taiwanese-Accented Mandarin and English Multi-Speaker Talking-Face Synthesis System
Chia-Hsuan Lin | Jian-Peng Liao | Cho-Chun Hsieh | Kai-Chun Liao | Chun-Hsin Wu
Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)

This paper proposes a multi-speaker talking-face synthesis system. The system incorporates voice cloning and lip-syncing technology to achieve text-to-talking-face generation by acquiring audio and video clips of any speaker and using zero-shot transfer learning. In addition, we used open-source corpora to train several Taiwanese-accented models and proposed using Mandarin Phonetic Symbols (Bopomofo) as the character embedding of the synthesizer to improve the system’s ability to synthesize Chinese-English code-switched sentences. Through our system, users can create rich applications. Also, the research on this technology is novel in the audiovisual speech synthesis field.