Ka-Chun Wong


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
EARA: Improving Biomedical Semantic Textual Similarity with Entity-Aligned Attention and Retrieval Augmentation
Ying Xiong | Xin Yang | Linjing Liu | Ka-Chun Wong | Qingcai Chen | Yang Xiang | Buzhou Tang
Findings of the Association for Computational Linguistics: EMNLP 2023

Measuring Semantic Textual Similarity (STS) is a fundamental task in biomedical text processing, which aims at quantifying the similarity between two input biomedical sentences. Unfortunately, the STS datasets in the biomedical domain are relatively smaller but more complex in semantics than common domain, often leading to overfitting issues and insufficient text representation even based on Pre-trained Language Models (PLMs) due to too many biomedical entities. In this paper, we propose EARA, an entity-aligned, attention-based and retrieval-augmented PLMs. Our proposed EARA first aligns the same type of fine-grained entity information in each sentence pair with an entity alignment matrix. Then, EARA regularizes the attention mechanism with an entity alignment matrix with an auxiliary loss. Finally, we add a retrieval module that retrieves similar instances to expand the scope of entity pairs and improve the model’s generalization. The comprehensive experiments reflect that EARA can achieve state-of-the-art performance on both in-domain and out-of-domain datasets. Source code is available.