Junzhe Liang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Distantly Supervised Contrastive Learning for Low-Resource Scripting Language Summarization
Junzhe Liang | Haifeng Sun | Zirui Zhuang | Qi Qi | Jingyu Wang | Jianxin Liao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Code summarization provides a natural language description for a given piece of code. In this work, we focus on scripting code—programming languages that interact with specific devices through commands. The low-resource nature of scripting languages makes traditional code summarization methods challenging to apply. To address this, we introduce a novel framework: distantly supervised contrastive learning for low-resource scripting language summarization. This framework leverages limited atomic commands and category constraints to enhance code representations. Extensive experiments demonstrate our method’s superiority over competitive baselines.