Junyuan Liu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
SummEQuAL: Summarization Evaluation via Question Answering using Large Language Models
Junyuan Liu | Zhengyan Shi | Aldo Lipani
Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024)

Summarization is hard to evaluate due to its diverse and abstract nature. Although N-gram-based metrics like BLEU and ROUGE are prevalent, they often do not align well with human evaluations. While model-based alternatives such as BERTScore improve, they typically require extensive labelled data. The advent of Large Language Models (LLMs) presents a promising avenue for evaluation. To this end, we introduce SummEQuAL, a novel content-based framework using LLMs for unified, reproducible summarization evaluation. SummEQuAL evaluates summaries by comparing their content with the source document, employing a question-answering approach to gauge both recall and precision. To validate SummEQuAL’s effectiveness, we develop a dataset based on MultiWOZ. We conduct experiments on SummEval and our MultiWOZ-based dataset, showing that SummEQuAL largely improves the quality of summarization evaluation. Notably, SummEQuAL demonstrates a 19.7% improvement over QuestEval in terms of sample-level Pearson correlation with human assessments of consistency on the SummEval dataset. Furthermore, it exceeds the performance of the BERTScore baseline by achieving a 17.3% increase in Spearman correlation on our MultiWOZ-based dataset. Our study illuminates the potential of LLMs for a unified evaluation framework, setting a new paradigm for future summarization evaluation.