This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JunlangQian
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Effective organization of in-context learning (ICL) demonstrations is key to improving the quality of large language model (LLM) responses. To create better sample-label pairs that instruct LLM understanding, we introduce logit separability, a criterion to assess the clarity of both samples and class-related words at the logit level. This facilitates the optimization of sample and label selection, enhancing the precision of information provided in ICL demonstrations. Additionally, we find that incorporating multiple class-related words for each sample, rather than relying on a single class name, improves performance by offering a broader range of label information. Building on these insights, we propose LICL, a logit separability-based method that jointly organizes samples and integrates multiple class-related words into each sample-label pair. Evaluations across seven classification datasets show that this approach significantly improves ICL performance by providing clearer instructions and richer label information.
In this study, we explore in-context learning (ICL) in document-level event argument extraction (EAE) to alleviate the dependency on large-scale labeled data for this task. We introduce the Heuristic-Driven Link-of-Analogy (HD-LoA) prompting tailored for the EAE task. Specifically, we hypothesize and validate that LLMs learn task-specific heuristics from demonstrations in ICL. Building upon this hypothesis, we introduce an explicit heuristic-driven demonstration construction approach, which transforms the haphazard example selection process into a systematic method that emphasizes task heuristics. Additionally, inspired by the analogical reasoning of human, we propose the link-of-analogy prompting, which enables LLMs to process new situations by drawing analogies to known situations, enhancing their performance on unseen classes beyond limited ICL examples. Experiments show that our method outperforms existing prompting methods and few-shot supervised learning methods on document-level EAE datasets. Additionally, the HD-LoA prompting shows effectiveness in other tasks like sentiment analysis and natural language inference, demonstrating its broad adaptability.
Few-shot text classification has seen significant advancements, particularly with entailment-based methods, which typically use either class labels or intensional definitions of class labels in hypotheses for label semantics expression. In this paper, we propose EDEntail, a method that employs extensional definition (EDef) of class labels in hypotheses, aiming to express the semantics of class labels more explicitly. To achieve the above goal, we develop an algorithm to gather and select extensional descriptive words of class labels and then order and format them into a sequence to form hypotheses. Our method has been evaluated and compared with state-of-the-art models on five classification datasets. The results demonstrate that our approach surpasses the supervised-learning methods and prompt-based methods under the few-shot setting, which underlines the potential of using an extensional definition of class labels for entailment-based few-shot text classification. Our code is available at https://github.com/MidiyaZhu/EDEntail.