Junkai Wu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Listen, Decipher and Sign: Toward Unsupervised Speech-to-Sign Language Recognition
Liming Wang | Junrui Ni | Heting Gao | Jialu Li | Kai Chieh Chang | Xulin Fan | Junkai Wu | Mark Hasegawa-Johnson | Chang Yoo
Findings of the Association for Computational Linguistics: ACL 2023

Existing supervised sign language recognition systems rely on an abundance of well-annotated data. Instead, an unsupervised speech-to-sign language recognition (SSR-U) system learns to translate between spoken and sign languages by observing only non-parallel speech and sign-language corpora. We propose speech2sign-U, a neural network-based approach capable of both character-level and word-level SSR-U. Our approach significantly outperforms baselines directly adapted from unsupervised speech recognition (ASR-U) models by as much as 50% recall@10 on several challenging American sign language corpora with various levels of sample sizes, vocabulary sizes, and audio and visual variability. The code is available at https://github.com/cactuswiththoughts/UnsupSpeech2Sign.gitcactuswiththoughts/UnsupSpeech2Sign.git.