Jun Takeuchi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Neural Networks in a Product of Hyperbolic Spaces
Jun Takeuchi | Noriki Nishida | Hideki Nakayama
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop

Machine learning in hyperbolic spaces has attracted much attention in natural language processing and many other fields. In particular, Hyperbolic Neural Networks (HNNs) have improved a wide variety of tasks, from machine translation to knowledge graph embedding. Although some studies have reported the effectiveness of embedding into the product of multiple hyperbolic spaces, HNNs have mainly been constructed in a single hyperbolic space, and their extension to product spaces has not been sufficiently studied. Therefore, we propose a novel method to extend a given HNN in a single space to a product of hyperbolic spaces. We apply our method to Hyperbolic Graph Convolutional Networks (HGCNs), extending several HNNs. Our model improved the graph node classification accuracy especially on datasets with tree-like structures. The results suggest that neural networks in a product of hyperbolic spaces can be more effective than in a single space in representing structural data.