Jun Qin

Also published as:


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
基于相似度进行句子选择的机器阅读理解数据增强(Machine reading comprehension data Augmentation for sentence selection based on similarity)
Shuang Nie (聂双) | Zheng Ye (叶正) | Jun Qin (覃俊) | Jing Liu (刘晶)
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“目前常见的机器阅读理解数据增强方法如回译,单独对文章或者问题进行数据增强,没有考虑文章、问题和选项三元组之间的联系。因此,本文探索了一种利用三元组联系进行文章句子筛选的数据增强方法,通过比较文章与问题以及选项的相似度,选取文章中与二者联系紧密的句子。同时为了使不同选项的三元组区别增大,我们选用了正则化Dropout的策略。实验结果表明,在RACE数据集上的准确率可提高3.8%。”

2021

pdf bib
基于BERT的意图分类与槽填充联合方法(Joint Method of Intention Classification and Slot Filling Based on BERT)
Jun Qin (覃俊) | Tianyu Ma (马天宇) | Jing Liu (刘晶) | Jun Tie (帖军) | Qi Hou (后琦)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

口语理解是自然语言处理的一个重要内容,意图分类和槽填充是口语理解的两个基本子任务。最近的研究表明,共同学习这两项任务可以起到相互促进的作用。本文提出了一个基于BERT的意图分类联合模型,通过一个关联网络使得两个任务建立直接联系,共享信息,以此来提升任务效果。模型引入BERT来增强词向量的语义表示,有效解决了目前联合模型由于训练数据规模较小导致的泛化能力较差的问题。实验结果表明,该模型能有效提升意图分类和槽填充的性能。