Julian Hamm


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
How STAR Transit NXT can help translators measure and increase their MT post-editing efficiency
Julian Hamm | Judith Klein
Proceedings of the 24th Annual Conference of the European Association for Machine Translation

As machine translation (MT) is being more tightly integrated into modern CAT-based translation workflows, measuring and increasing MT efficiency has become one of the main concerns of LSPs and companies trying to optimise their processes in terms of quality and performance. When it comes to measur-ing MT efficiency, STAR’s CAT tool Transit NXT offers post-editing distance (PED) and MT error categorisation as two core features of Transit’s compre-hensive QA module. With DeepL glossa-ry integration and MT confidence scores, translators will also have access to two new features which can help them in-crease their MT post-editing efficiency.