Judit Casademont Moner


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Generation of Synthetic Error Data of Verb Order Errors for Swedish
Judit Casademont Moner | Elena Volodina
Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)

We report on our work-in-progress to generate a synthetic error dataset for Swedish by replicating errors observed in the authentic error annotated dataset. We analyze a small subset of authentic errors, capture regular patterns based on parts of speech, and design a set of rules to corrupt new data. We explore the approach and identify its capabilities, advantages and limitations as a way to enrich the existing collection of error-annotated data. This work focuses on word order errors, specifically those involving the placement of finite verbs in a sentence.