Juanhe (TJ) Tan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Causal Abstraction for Chain-of-Thought Reasoning in Arithmetic Word Problems
Juanhe (TJ) Tan
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

Recent work suggests that large language models (LLMs) achieve higher accuracy on multi-step reasoning tasks when prompted to generate intermediate reasoning steps, or a chain of thought (CoT), before their final answer. However, it is unclear how exactly CoTs improve LLMs’ accuracy, and in particular, if LLMs use their CoTs to reason to their final answers. This paper tries to answer this question with respect to arithmetic word problems, by (i) evaluating the correctness of LLMs’ CoTs, and (ii) using causal abstraction to assess if the intermediate tokens produced as part of a CoT causally impact LLMs’ final answers, in line with the reasoning described by the CoT. We find that for CoT-prompted LLMs, correct answers to arithmetic problems are highly correlated with correct CoTs, and that when LLMs produce correct CoTs, they realize to a fairly large extent the causal models suggested by their CoTs. Higher degrees of realization also seem associated with better overall accuracy on the arithmetic problems. These findings suggest that some CoT-prompted LLMs may do better on multi-step arithmetic reasoning at least partly because they use their CoTs to reason to their final answers. However, for some LLMs, other internal processes may also be involved.