Joshua K. Hartshorne


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
Evaluating Hierarchies of Verb Argument Structure with Hierarchical Clustering
Jesse Mu | Joshua K. Hartshorne | Timothy O’Donnell
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Verbs can only be used with a few specific arrangements of their arguments (syntactic frames). Most theorists note that verbs can be organized into a hierarchy of verb classes based on the frames they admit. Here we show that such a hierarchy is objectively well-supported by the patterns of verbs and frames in English, since a systematic hierarchical clustering algorithm converges on the same structure as the handcrafted taxonomy of VerbNet, a broad-coverage verb lexicon. We also show that the hierarchies capture meaningful psychological dimensions of generalization by predicting novel verb coercions by human participants. We discuss limitations of a simple hierarchical representation and suggest similar approaches for identifying the representations underpinning verb argument structure.

2014

pdf bib
The VerbCorner Project: Findings from Phase 1 of crowd-sourcing a semantic decomposition of verbs
Joshua K. Hartshorne | Claire Bonial | Martha Palmer
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2013

pdf bib
The VerbCorner Project: Toward an Empirically-Based Semantic Decomposition of Verbs
Joshua K. Hartshorne | Claire Bonial | Martha Palmer
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing