Joseph Noh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference
Eric Mitchell | Joseph Noh | Siyan Li | Will Armstrong | Ananth Agarwal | Patrick Liu | Chelsea Finn | Christopher Manning
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

While large pre-trained language models are powerful, their predictions often lack logical consistency across test inputs. For example, a state-of-the-art Macaw question-answering (QA) model answers <i>Yes</i> to <i>Is a sparrow a bird?</i> and <i>Does a bird have feet?</i> but answers <i>No</i> to <i>Does a sparrow have feet?</i>. To address this failure mode, we propose a framework, Consistency Correction through Relation Detection, or <b>ConCoRD</b>, for boosting the consistency and accuracy of pre-trained NLP models using pre-trained natural language inference (NLI) models without fine-tuning or re-training. Given a batch of test inputs, ConCoRD samples several candidate outputs for each input and instantiates a factor graph that accounts for both the model’s belief about the likelihood of each answer choice in isolation and the NLI model’s beliefs about pair-wise answer choice compatibility. We show that a weighted MaxSAT solver can efficiently compute high-quality answer choices under this factor graph, improving over the raw model’s predictions. Our experiments demonstrate that ConCoRD consistently boosts accuracy and consistency of off-the-shelf closed-book QA and VQA models using off-the-shelf NLI models, notably increasing accuracy of LXMERT on ConVQA by 5% absolute. See the project website (https://ericmitchell.ai/emnlp-2022-concord/) for code and data.