Jose Such


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
I love pineapple on pizza != I hate pineapple on pizza: Stance-Aware Sentence Transformers for Opinion Mining
Vahid Ghafouri | Jose Such | Guillermo Suarez-Tangil
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Sentence transformers excel at grouping topically similar texts, but struggle to differentiate opposing viewpoints on the same topic. This shortcoming hinders their utility in applications where understanding nuanced differences in opinion is essential, such as those related to social and political discourse analysis. This paper addresses this issue by fine-tuning sentence transformers with arguments for and against human-generated controversial claims. We demonstrate how our fine-tuned model enhances the utility of sentence transformers for social computing tasks such as opinion mining and stance detection. We elaborate that applying stance-aware sentence transformers to opinion mining is a more computationally efficient and robust approach in comparison to the classic classification-based approaches.