José Rosales Núñez


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Multi-way Variational NMT for UGC: Improving Robustness in Zero-shot Scenarios via Mixture Density Networks
José Rosales Núñez | Djamé Seddah | Guillaume Wisniewski
Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)

This work presents a novel Variational Neural Machine Translation (VNMT) architecture with enhanced robustness properties, which we investigate through a detailed case-study addressing noisy French user-generated content (UGC) translation to English. We show that the proposed model, with results comparable or superior to state-of-the-art VNMT, improves performance over UGC translation in a zero-shot evaluation scenario while keeping optimal translation scores on in-domain test sets. We elaborate on such results by visualizing and explaining how neural learning representations behave when processing UGC noise. In addition, we show that VNMT enforces robustness to the learned embeddings, which can be later used for robust transfer learning approaches.