Jorge Vallego


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
La Leaderboard: A Large Language Model Leaderboard for Spanish Varieties and Languages of Spain and Latin America
María Grandury | Javier Aula-Blasco | Júlia Falcão | Clémentine Fourrier | Miguel González Saiz | Gonzalo Martínez | Gonzalo Santamaria Gomez | Rodrigo Agerri | Nuria Aldama García | Luis Chiruzzo | Javier Conde | Helena Gomez Adorno | Marta Guerrero Nieto | Guido Ivetta | Natàlia López Fuertes | Flor Miriam Plaza-del-Arco | María-Teresa Martín-Valdivia | Helena Montoro Zamorano | Carmen Muñoz Sanz | Pedro Reviriego | Leire Rosado Plaza | Alejandro Vaca Serrano | Estrella Vallecillo-Rodríguez | Jorge Vallego | Irune Zubiaga
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Leaderboards showcase the current capabilities and limitations of Large Language Models (LLMs). To motivate the development of LLMs that represent the linguistic and cultural diversity of the Spanish-speaking community, we present La Leaderboard, the first open-source leaderboard to evaluate generative LLMs in languages and language varieties of Spain and Latin America. La Leaderboard is a community-driven project that aims to establish an evaluation standard for everyone interested in developing LLMs for the Spanish-speaking community. This initial version combines 66 datasets in Catalan, Basque, Galician, and different Spanish varieties, showcasing the evaluation results of 50 models. To encourage community-driven development of leaderboards in other languages, we explain our methodology, including guidance on selecting the most suitable evaluation setup for each downstream task. In particular, we provide a rationale for using fewer few-shot examples than typically found in the literature, aiming to reduce environmental impact and facilitate access to reproducible results for a broader research community.