This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JorgeBaptista
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
We present the iRead4Skills Intelligent Complexity Analyzer, an open-access platform specifically designed to assist educators and content developers in addressing the needs of low-literacy adults by analyzing and diagnosing text complexity. This multilingual system integrates a range of Natural Language Processing (NLP) components to assess input texts along multiple levels of granularity and linguistic dimensions in Portuguese, Spanish, and French. It assigns four tailored difficulty levels using state-of-the-art models, and introduces four diagnostic yardsticks—textual structure, lexicon, syntax, and semantics—offering users actionable feedback on specific dimensions of textual complexity. Each component of the system is supported by experiments comparing alternative models on manually annotated data.
This paper presents the construction of VIDiom-PT, a corpus in European Portuguese annotated for verbal idioms (e.g. O Rui bateu a bota, lit.: Rui hit the boot ‘Rui died’). This linguistic resource aims to support the development of systems capable of processing such constructions in this language variety. To assist in the annotation effort, two tools were built. The first allows for the detection of possible instances of verbal idioms in texts, while the second provides a graphical interface for annotating them. This effort culminated in the annotation of a total of 5,178 instances of 747 different verbal idioms in more than 200,000 sentences in European Portuguese. A highly reliable inter-annotator agreement was achieved, using Krippendorff’s alpha for nominal data (0.869) with 5% of the data independently annotated by 3 experts. Part of the annotated corpus is also made publicly available.
This paper presents an adaptation of the Abstract Meaning Representation (AMR) framework for European Portuguese. This adaptation, referred to as Lexicalized Meaning Representation (LMR), was deemed necessary to address specific challenges posed by the grammar of the language, as well as various linguistic issues raised by the current version of AMR annotation guidelines. Some of these aspects stemmed from the use of a notation similar to AMR to represent real texts from the legal domain, enabling its use in Natural Language Processing (NLP) applications. In this context, several aspects of AMR were significantly simplified (e.g., the representation of multi-word expressions, named entities, and temporal expressions), while others were introduced, with efforts made to maintain the representation scheme as compatible as possible with standard AMR notation.
This study describes a pilot annotation task designed to capture orthographic, grammatical, lexical, semantic, and discursive patterns exhibited by college native English speakers participating in developmental education (DevEd) courses. The paper introduces an annotation scheme developed by two linguists aiming at pinpointing linguistic challenges that hinder effective written communication. The scheme builds upon patterns supported by the literature, which are known as predictors of student placement in DevEd courses and English proficiency levels. Other novel, multilayered, linguistic aspects that the literature has not yet explored are also presented. The scheme and its primary categories are succinctly presented and justified. Two trained annotators used this scheme to annotate a sample of 103 text units (3 during the training phase and 100 during the annotation task proper). Texts were randomly selected from a population of 290 community college intending students. An in-depth quality assurance inspection was conducted to assess tagging consistency between annotators and to discern (and address) annotation inaccuracies. Krippendorff’s Alpha (K-alpha) interrater reliability coefficients were calculated, revealing a K-alpha score of k=0.40, which corresponds to a moderate level of agreement, deemed adequate for the complexity and length of the annotation task.
Developmental Education (DevEd) courses align students’ college-readiness skills with higher education literacy demands. These courses often use automated assessment tools like Accuplacer for student placement. Existing literature raises concerns about these exams’ accuracy and placement precision due to their narrow representation of the writing process. These concerns warrant further attention within the domain of automatic placement systems, particularly in the establishment of a reference corpus of annotated essays for these systems’ machine/deep learning. This study aims at an enhanced annotation procedure to assess college students’ writing patterns more accurately. It examines the efficacy of machine-learning-based DevEd placement, contrasting Accuplacer’s classification of 100 college-intending students’ essays into two levels (Level 1 and 2) against that of 6 human raters. The classification task encompassed the assessment of the 6 textual criteria currently used by Accuplacer: mechanical conventions, sentence variety & style, idea development & support, organization & structure, purpose & focus, and critical thinking. Results revealed low inter-rater agreement, both on the individual criteria and the overall classification, suggesting human assessment of writing proficiency can be inconsistent in this context. To achieve a more accurate determination of writing proficiency and improve DevEd placement, more robust classification methods are thus required.
This paper aims to assess the role of multiword compound adverbs in distinguishing Brazilian Portuguese (PT-BR) from European Portuguese (PT-PT). Two key factors underpin this focus: Firstly, multiword expressions often provide less ambiguity compared to single words, even when their meaning is idiomatic (non-compositional). Secondly, despite constituting a significant portion of lexicons in many languages, they are frequently overlooked in Natural Language Processing, possibly due to their heterogeneous nature and lexical range.For this study, a large lexicon of Portuguese multiword adverbs (3,665) annotated with diatopic information regarding language variety was utilized. The paper investigates the distribution of this category in a corpus consisting in excerpts from journalistic texts sourced from the DSL (Dialect and Similar Language) corpus, representing Brazilian (PT-BR) and European Portuguese (PT-PT), respectively, each partition containing 18,000 sentences.Results indicate a substantial similarity between the two varieties, with a considerable overlap in the lexicon of multiword adverbs. Additionally, specific adverbs unique to each language variety were identified. Lexical entries recognized in the corpus represent 18.2% (PT-BR) to 19.5% (PT-PT) of the lexicon, and approximately 5,700 matches in each partition. While many of the matches are spurious due to ambiguity with otherwise non-idiomatic, free strings, occurrences of adverbs marked as exclusive to one variety in texts from the other variety are rare.
This paper analyses the support (or light) verb constructions (SVC) in a publicly available, manually annotated corpus of multiword expressions (MWE) in Brazilian Portuguese. The paper highlights several issues in the linguistic definitions therein adopted for these types of MWE, and reports the results from applying STRING, a rule-based parsing system, originally developed for European Portuguese, to this corpus from Brazilian Portuguese. The goal is two-fold: to improve the linguistic definition of SVC in the annotation task, as well as to gauge the major difficulties found when transposing linguistic resources between these two varieties of the same language.
This paper presents the cic_ualg’s system that took part in the Discriminating between Similar Languages (DSL) shared task, held at the VarDial 2017 Workshop. This year’s task aims at identifying 14 languages across 6 language groups using a corpus of excerpts of journalistic texts. Two classification approaches were compared: a single-step (all languages) approach and a two-step (language group and then languages within the group) approach. Features exploited include lexical features (unigrams of words) and character n-grams. Besides traditional (untyped) character n-grams, we introduce typed character n-grams in the DSL task. Experiments were carried out with different feature representation methods (binary and raw term frequency), frequency threshold values, and machine-learning algorithms – Support Vector Machines (SVM) and Multinomial Naive Bayes (MNB). Our best run in the DSL task achieved 91.46% accuracy.
This paper describes metaTED ― a freely available corpus of metadiscursive acts in spoken language collected via crowdsourcing. Metadiscursive acts were annotated on a set of 180 randomly chosen TED talks in English, spanning over different speakers and topics. The taxonomy used for annotation is composed of 16 categories, adapted from Adel(2010). This adaptation takes into account both the material to annotate and the setting in which the annotation task is performed. The crowdsourcing setup is described, including considerations regarding training and quality control. The collected data is evaluated in terms of quantity of occurrences, inter-annotator agreement, and annotation related measures (such as average time on task and self-reported confidence). Results show different levels of agreement among metadiscourse acts (α ∈ [0.15; 0.49]). To further assess the collected material, a subset of the annotations was submitted to expert appreciation, who validated which of the marked occurrences truly correspond to instances of the metadiscursive act at hand. Similarly to what happened with the crowd, experts revealed different levels of agreement between categories (α ∈ [0.18; 0.72]). The paper concludes with a discussion on the applicability of metaTED with respect to each of the 16 categories of metadiscourse.