Jordan Miner


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
An NLP Case Study on Predicting the Before and After of the Ukraine–Russia and Hamas–Israel Conflicts
Jordan Miner | John E. Ortega
Proceedings of the Third Workshop on NLP for Positive Impact

We propose a method to predict toxicity and other textual attributes through the use of natural language processing (NLP) techniques for two recent events: the Ukraine-Russia and Hamas-Israel conflicts. This article provides a basis for exploration in future conflicts with hopes to mitigate risk through the analysis of social media before and after a conflict begins. Our work compiles several datasets from Twitter and Reddit for both conflicts in a before and after separation with an aim of predicting a future state of social media for avoidance. More specifically, we show that: (1) there is a noticeable difference in social media discussion leading up to and following a conflict and (2) social media discourse on platforms like Twitter and Reddit is useful in identifying future conflicts before they arise. Our results show that through the use of advanced NLP techniques (both supervised and unsupervised) toxicity and other attributes about language before and after a conflict is predictable with a low error of nearly 1.2 percent for both conflicts.