Jordan Foley


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Using time series and natural language processing to identify viral moments in the 2016 U.S. Presidential Debate
Josephine Lukito | Prathusha K Sarma | Jordan Foley | Aman Abhishek
Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science

This paper proposes a method for identifying and studying viral moments or highlights during a political debate. Using a combined strategy of time series analysis and domain adapted word embeddings, this study provides an in-depth analysis of several key moments during the 2016 U.S. Presidential election. First, a time series outlier analysis is used to identify key moments during the debate. These moments had to result in a long-term shift in attention towards either Hillary Clinton or Donald Trump (i.e., a transient change outlier or an intervention, resulting in a permanent change in the time series). To assess whether these moments also resulted in a discursive shift, two corpora are produced for each potential viral moment (a pre-viral corpus and post-viral corpus). A domain adaptation layer learns weights to combine a generic and domain-specific (DS) word embedding into a domain adapted (DA) embedding. Words are then classified using a generic encoder+ classifier framework that relies on these word embeddings as inputs. Results suggest that both Clinton and Trump were able to induce discourse-shifting viral moments, though the former is much better at producing a topically-specific discursive shift.