Joonyoung Jo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Representation-to-Creativity (R2C): Automated Holistic Scoring Model for Essay Creativity
Deokgi Kim | Joonyoung Jo | Byung-Won On | Ingyu Lee
Findings of the Association for Computational Linguistics: NAACL 2025

Despite active research on Automated Essay Scoring (AES), there is a noticeable scarcity of studies focusing on predicting creativity scores for essays. In this study, we develop a new essay rubric specifically designed for assessing creativity in essays. Leveraging this rubric, we construct ground truth data consisting of 5,048 essays. Furthermore, we propose a novel self-supervised learning model that recognizes cluster patterns within the essay embedding space and leverages them for creativity scoring. This approach aims to automatically generate a high-quality training set, thereby facilitating the training of diverse language models. Our experimental findings indicated a substantial enhancement in the assessment of essay creativity, demonstrating an increase in F1-score up to 58% compared to the primary state-of-the-art models across the ASAP and AIHUB datasets.