Joongmin Shin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MultiDocFusion : Hierarchical and Multimodal Chunking Pipeline for Enhanced RAG on Long Industrial Documents
Joongmin Shin | Chanjun Park | Jeongbae Park | Jaehyung Seo | Heuiseok Lim
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

RAG-based QA has emerged as a powerful method for processing long industrial documents. However, conventional text chunking approaches often neglect complex and long industrial document structures, causing information loss and reduced answer quality. To address this, we introduce MultiDocFusion, a multimodal chunking pipeline that integrates: (i) detection of document regions using vision-based document parsing, (ii) text extraction from these regions via OCR, (iii) reconstruction of document structure into a hierarchical tree using large language model (LLM)-based document section hierarchical parsing (DSHP-LLM), and (iv) construction of hierarchical chunks through DFS-based grouping. Extensive experiments across industrial benchmarks demonstrate that MultiDocFusion improves retrieval precision by 8–15% and ANLS QA scores by 2–3% compared to baselines, emphasizing the critical role of explicitly leveraging document hierarchy for multimodal document-based QA. These significant performance gains underscore the necessity of structure-aware chunking in enhancing the fidelity of RAG-based QA systems.