This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Joon-HoLim
Also published as:
Joon-ho Lim
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The existing assessments of planning capabilities of large language models (LLMs) remain largely limited to single-language or specific representation formats. To address this gap, we introduce the Multi-Plan benchmark comprising 204 multilingual and multi-format travel planning scenarios. In experimental results obtained with state-of-the-art LLMs, the Multi-Plan benchmark effectively highlights the performance disparities among models, notably showing superior results for reasoning-specialized models. Interestingly, language differences exhibited minimal impact, whereas mathematically structured representations significantly improved planning accuracy for most models, underscoring the crucial role of the input format. These findings enhance our understanding of planning abilities of LLMs, offer valuable insights for future research, and emphasize the need for more sophisticated AI evaluation methods. This dataset is publicly available at http://huggingface.co/datasets/Bllossom/Multi-Plan.
For translation quality estimation at word and sentence levels, this paper presents a novel approach based on BERT that recently has achieved impressive results on various natural language processing tasks. Our proposed model is re-purposed BERT for the translation quality estimation and uses multi-task learning for the sentence-level task and word-level subtasks (i.e., source word, target word, and target gap). Experimental results on Quality Estimation shared task of WMT19 show that our systems show competitive results and provide significant improvements over the baseline.