Joohyung Yun


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
HELIOS: Harmonizing Early Fusion, Late Fusion, and LLM Reasoning for Multi-Granular Table-Text Retrieval
Sungho Park | Joohyung Yun | Jongwuk Lee | Wook-Shin Han
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Table-text retrieval aims to retrieve relevant tables and text to support open-domain question answering. Existing studies use either early or late fusion, but face limitations. Early fusion pre-aligns a table row with its associated passages, forming “stars,” which often include irrelevant contexts and miss query-dependent relationships. Late fusion retrieves individual nodes, dynamically aligning them, but it risks missing relevant contexts. Both approaches also struggle with advanced reasoning tasks, such as column-wise aggregation and multi-hop reasoning. To address these issues, we propose HELIOS, which combines the strengths of both approaches. First, the edge-based bipartite subgraph retrieval identifies finer-grained edges between table segments and passages, effectively avoiding the inclusion of irrelevant contexts. Then, the query-relevant node expansion identifies the most promising nodes, dynamically retrieving relevant edges to grow the bipartite subgraph, minimizing the risk of missing important contexts. Lastly, the star-based LLM refinement performs logical inference at the star graph level rather than the bipartite subgraph, supporting advanced reasoning tasks. Experimental results show that HELIOS outperforms state-of-the-art models with a significant improvement up to 42.6% and 39.9% in recall and nDCG, respectively, on the OTT-QA benchmark.

pdf bib
LILaC: Late Interacting in Layered Component Graph for Open-domain Multimodal Multihop Retrieval
Joohyung Yun | Doyup Lee | Wook-Shin Han
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multimodal document retrieval aims to retrieve query-relevant components from documents composed of textual, tabular, and visual elements. An effective multimodal retriever needs to handle two main challenges: (1) mitigate the effect of irrelevant contents caused by fixed, single-granular retrieval units, and (2) support multihop reasoning by effectively capturing semantic relationships among components within and across documents. To address these challenges, we propose LILaC, a multimodal retrieval framework featuring two core innovations. First, we introduce a layered component graph, explicitly representing multimodal information at two layers—each representing coarse and fine granularity—facilitating efficient yet precise reasoning. Second, we develop a late-interaction-based subgraph retrieval method, an edge-based approach that initially identifies coarse-grained nodes for efficient candidate generation, then performs fine-grained reasoning via late interaction. Extensive experiments demonstrate that LILaC achieves state-of-the-art retrieval performance on all five benchmarks, notably without additional fine-tuning. We make the artifacts publicly available at github.com/joohyung00/lilac.