Jong-Hyeon Lee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
SISER: Semantic-Infused Selective Graph Reasoning for Fact Verification
Eunhwan Park | Jong-Hyeon Lee | DongHyeon Jeon | Seonhoon Kim | Inho Kang | Seung-Hoon Na
Proceedings of the 29th International Conference on Computational Linguistics

This study proposes Semantic-Infused SElective Graph Reasoning (SISER) for fact verification, which newly presents semantic-level graph reasoning and injects its reasoning-enhanced representation into other types of graph-based and sequence-based reasoning methods. SISER combines three reasoning types: 1) semantic-level graph reasoning, which uses a semantic graph from evidence sentences, whose nodes are elements of a triple – <Subject, Verb, Object>, 2) “semantic-infused” sentence-level “selective” graph reasoning, which combine semantic-level and sentence-level representations and perform graph reasoning in a selective manner using the node selection mechanism, and 3) sequence reasoning, which concatenates all evidence sentences and performs attention-based reasoning. Experiment results on a large-scale dataset for Fact Extraction and VERification (FEVER) show that SISER outperforms the previous graph-based approaches and achieves state-of-the-art performance.

2020

pdf bib
JBNU at SemEval-2020 Task 4: BERT and UniLM for Commonsense Validation and Explanation
Seung-Hoon Na | Jong-Hyeon Lee
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper presents our contributions to the SemEval-2020 Task 4 Commonsense Validation and Explanation (ComVE) and includes the experimental results of the two Subtasks B and C of the SemEval-2020 Task 4. Our systems rely on pre-trained language models, i.e., BERT (including its variants) and UniLM, and rank 10th and 7th among 27 and 17 systems on Subtasks B and C, respectively. We analyze the commonsense ability of the existing pretrained language models by testing them on the SemEval-2020 Task 4 ComVE dataset, specifically for Subtasks B and C, the explanation subtasks with multi-choice and sentence generation, respectively.