Jong Ho Park


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Literary Event Detection
Matthew Sims | Jong Ho Park | David Bamman
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this work we present a new dataset of literary events—events that are depicted as taking place within the imagined space of a novel. While previous work has focused on event detection in the domain of contemporary news, literature poses a number of complications for existing systems, including complex narration, the depiction of a broad array of mental states, and a strong emphasis on figurative language. We outline the annotation decisions of this new dataset and compare several models for predicting events; the best performing model, a bidirectional LSTM with BERT token representations, achieves an F1 score of 73.9. We then apply this model to a corpus of novels split across two dimensions—prestige and popularity—and demonstrate that there are statistically significant differences in the distribution of events for prestige.