This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JonahLuby
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Current speech encoding pipelines often rely on an additional text-based LM to get robust representations of human communication, even though SotA speech-to-text models often have a LM within. This work proposes an approach to improve the LM within an audio model such that the subsequent text-LM is unnecessary. We introduce **WhiSPA** (**Whi**sper with **S**emantic and **P**sychological **A**lignment), which leverages a novel audio training objective: contrastive loss with a language model embedding as a teacher. Using over 500k speech segments from mental health audio interviews, we evaluate the utility of aligning Whisper’s latent space with semantic representations from a text autoencoder (SBERT) and lexically derived embeddings of basic psychological dimensions: emotion and personality. Over self-supervised affective tasks and downstream psychological tasks, WhiSPA surpasses current speech encoders, achieving an average error reduction of 73.4% and 83.8%, respectively. WhiSPA demonstrates that it is not always necessary to run a subsequent text LM on speech-to-text output in order to get a rich psychological representation of human communication.
While transformer-based systems have enabled greater accuracies with fewer training examples, data acquisition obstacles still persist for rare-class tasks – when the class label is very infrequent (e.g. < 5% of samples). Active learning has in general been proposed to alleviate such challenges, but choice of selection strategy, the criteria by which rare-class examples are chosen, has not been systematically evaluated. Further, transformers enable iterative transfer-learning approaches. We propose and investigate transfer- and active learning solutions to the rare class problem of dissonance detection through utilizing models trained on closely related tasks and the evaluation of acquisition strategies, including a proposed probability-of-rare-class (PRC) approach. We perform these experiments for a specific rare-class problem: collecting language samples of cognitive dissonance from social media. We find that PRC is a simple and effective strategy to guide annotations and ultimately improve model accuracy while transfer-learning in a specific order can improve the cold-start performance of the learner but does not benefit iterations of active learning.