Jón Friðrik Daðason


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Pre-training and Evaluating Transformer-based Language Models for Icelandic
Jón Friðrik Daðason | Hrafn Loftsson
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In this paper, we evaluate several Transformer-based language models for Icelandic on four downstream tasks: Part-of-Speech tagging, Named Entity Recognition. Dependency Parsing, and Automatic Text Summarization. We pre-train four types of monolingual ELECTRA and ConvBERT models and compare our results to a previously trained monolingual RoBERTa model and the multilingual mBERT model. We find that the Transformer models obtain better results, often by a large margin, compared to previous state-of-the-art models. Furthermore, our results indicate that pre-training larger language models results in a significant reduction in error rates in comparison to smaller models. Finally, our results show that the monolingual models for Icelandic outperform a comparably sized multilingual model.

2019

pdf bib
Nefnir: A high accuracy lemmatizer for Icelandic
Svanhvít Lilja Ingólfsdóttir | Hrafn Loftsson | Jón Friðrik Daðason | Kristín Bjarnadóttir
Proceedings of the 22nd Nordic Conference on Computational Linguistics

Lemmatization, finding the basic morphological form of a word in a corpus, is an important step in many natural language processing tasks when working with morphologically rich languages. We describe and evaluate Nefnir, a new open source lemmatizer for Icelandic. Nefnir uses suffix substitution rules, derived from a large morphological database, to lemmatize tagged text. Evaluation shows that for correctly tagged text, Nefnir obtains an accuracy of 99.55%, and for text tagged with a PoS tagger, the accuracy obtained is 96.88%.