This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JonCai
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
In this paper, we present LiDARR (**Li**nking **D**ocument **A**MRs with **R**eferents **R**esolvers), a web tool for semantic annotation at the document level using the formalism of Abstract Meaning Representation (AMR). LiDARR streamlines the creation of comprehensive knowledge graphs from natural language documents through semantic annotation. The tool features a visualization and interactive user interface, transforming document-level AMR annotation into an models-facilitated verification process. This is achieved through the integration of an AMR-to-surface alignment model and a coreference resolution model. Additionally, we incorporate PropBank rolesets into LiDARR to extend implicit roles in annotated AMR, allowing implicit roles to be linked through the coreference chains via AMRs.
Understanding the structure of multi-party conversation and the intentions and dialogue acts of each speaker remains a significant challenge in NLP. While a number of corpora annotated using theoretical frameworks of dialogue have been proposed, these typically focus on either utterance-level labeling of speaker intent, missing wider context, or the rhetorical structure of a dialogue, losing fine-grained intents captured in dialogue acts. Recently, the Dependency Dialogue Acts (DDA) framework has been proposed to for modeling both the fine-grained intents of each speaker and the structure of multi-party dialogues. However, there is not yet a corpus annotated with this framework available for the community to study. To address this gap, we introduce a new corpus of 33 dialogues and over 9,000 utterance units, densely annotated using the Dependency Dialogue Acts (DDA) framework.Our dataset spans four genres of multi-party conversations from different modalities: (1) physics classroom discussions, (2) engineering classroom discussions, (3) board game interactions, and (4) written online game chat logs. Each session is doubly annotated and adjudicated to ensure high-quality labeling. We present a description of the dataset and annotation process, an analysis of speaker dynamics enabled by our annotation, and a baseline evaluation of LLMs as DDA parsers. We discuss the implications of this dataset understanding dynamics between speakers and for developing more controllable dialogue agents.
This paper is dedicated to the design and evaluation of the first AMR parser tailored for clinical notes. Our objective was to facilitate the precise transformation of the clinical notes into structured AMR expressions, thereby enhancing the interpretability and usability of clinical text data at scale. Leveraging the colon cancer dataset from the Temporal Histories of Your Medical Events (THYME) corpus, we adapted a state-of-the-art AMR parser utilizing continuous training. Our approach incorporates data augmentation techniques to enhance the accuracy of AMR structure predictions. Notably, through this learning strategy, our parser achieved an impressive F1 score of 88% on the THYME corpus’s colon cancer dataset. Moreover, our research delved into the efficacy of data required for domain adaptation within the realm of clinical notes, presenting domain adaptation data requirements for AMR parsing. This exploration not only underscores the parser’s robust performance but also highlights its potential in facilitating a deeper understanding of clinical narratives through structured semantic representations.
This paper presents a novel Cross-document Abstract Meaning Representation (X-AMR) annotation tool designed for annotating key corpus-level event semantics. Leveraging machine assistance through the Prodigy Annotation Tool, we enhance the user experience, ensuring ease and efficiency in the annotation process. Through empirical analyses, we demonstrate the effectiveness of our tool in augmenting an existing event corpus, highlighting its advantages when integrated with GPT-4. Code and annotations: href{https://anonymous.4open.science/r/xamr-9ED0}{anonymous.4open.science/r/xamr-9ED0} footnote Demo: {href{https://youtu.be/TuirftxciNE}{https://youtu.be/TuirftxciNE}} footnote Live Link: {href{https://tinyurl.com/mrxmafwh}{https://tinyurl.com/mrxmafwh}}
In recent decades, there has been a significant push to leverage technology to aid both teachers and students in the classroom. Language processing advancements have been harnessed to provide better tutoring services, automated feedback to teachers, improved peer-to-peer feedback mechanisms, and measures of student comprehension for reading. Automated question generation systems have the potential to significantly reduce teachers’ workload in the latter. In this paper, we compare three differ- ent neural architectures for question generation across two types of reading material: narratives and textbooks. For each architecture, we explore the benefits of including question attributes in the input representation. Our models show that a T5 architecture has the best overall performance, with a RougeL score of 0.536 on a narrative corpus and 0.316 on a textbook corpus. We break down the results by attribute and discover that the attribute can improve the quality of some types of generated questions, including Action and Character, but this is not true for all models.
In this paper, we introduce CAMRA (Copilot for AMR Annotatations), a cutting-edge web-based tool designed for constructing Abstract Meaning Representation (AMR) from natural language text. CAMRA offers a novel approach to deep lexical semantics annotation such as AMR, treating AMR annotation akin to coding in programming languages. Leveraging the familiarity of programming paradigms, CAMRA encompasses all essential features of existing AMR editors, including example lookup, while going a step further by integrating Propbank roleset lookup as an autocomplete feature within the tool. Notably, CAMRA incorporates AMR parser models as coding co-pilots, greatly enhancing the efficiency and accuracy of AMR annotators.