This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JohnSloan
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper sets out the first web-based transcription system for the Irish language - Fotheidil, a system that utilises speech-related AI technologies as part of the ABAIR initiative. The system includes both off-the-shelf pre-trained voice activity detection and speaker diarisation models and models trained specifically for Irish automatic speech recognition and capitalisation and punctuation restoration. Semi-supervised learning is explored to improve the acoustic model of a modular TDNN-HMM ASR system, yielding substantial improvements for out-of-domain test sets and dialects that are underrepresented in the supervised training set. A novel approach to capitalisation and punctuation restoration involving sequence-to-sequence models is compared with the conventional approach using a classification model. Experimental results show here also substantial improvements in performance. It is intended that will be made freely available for public use, and represents an important resource researchers and others who transcribe Irish language materials. Human-corrected transcriptions will be collected and included in the training dataset as the system is used, which should lead to incremental improvements to the ASR model in a cyclical, community-driven fashion.
In this paper, we present the Irish language learning platform, An Sc ́eala ́ı, an intelligent Computer-Assisted Language Learning (iCALL) system which incorporates speech and language technologies in ways that promote the holistic development of the language skills - writing, listening, reading, and speaking. The technologies offer the advantage of extensive feedback in spoken and written form, enabling learners to improve their production. The system works equally as a classroom-based tool and as a standalone platform for the autonomous learner. Given the key role of education for the transmission of all the Celtic languages, it is vital that digital technologies be harnessed to maximise the effectiveness of language teaching/learning. An Scéalaí has been used by large numbers of learners and teachers and has received very positive feedback. It is built as a modular system which allows existing and newly emerging technologies to be readily integrated, even if those technologies are still in development phase. The architecture is largely language-independent, and as an open-source system, it is hoped that it can be usefully deployed in other Celtic languages.
We describe recent extensions to the open source Learning And Reading Assistant (LARA) supporting image-based and phonetically annotated texts. We motivate the utility of these extensions both in general and specifically in relation to endangered and archaic languages, and illustrate with examples from the revived Australian language Barngarla, Icelandic Sign Language, Irish Gaelic, Old Norse manuscripts and Egyptian hieroglyphics.
A popular idea in Computer Assisted Language Learning (CALL) is to use multimodal annotated texts, with annotations typically including embedded audio and translations, to support L2 learning through reading. An important question is how to create good quality audio, which can be done either through human recording or by a Text-To-Speech (TTS) engine. We may reasonably expect TTS to be quicker and easier, but human to be of higher quality. Here, we report a study using the open source LARA platform and ten languages. Samples of audio totalling about five minutes, representing the same four passages taken from LARA versions of Saint-Exupèry’s “Le petit prince”, were provided for each language in both human and TTS form; the passages were chosen to instantiate the 2x2 cross product of the conditions dialogue, not-dialogue and humour, not-humour. 251 subjects used a web form to compare human and TTS versions of each item and rate the voices as a whole. For the three languages where TTS did best, English, French and Irish, the evidence from this study and the previous one it extended suggest that TTS audio is now pedagogically adequate and roughly comparable with a non-professional human voice in terms of exemplifying correct pronunciation and prosody. It was however still judged substantially less natural and less pleasant to listen to. No clear evidence was found to support the hypothesis that dialogue and humour pose special problems for TTS. All data and software will be made freely available.
We present an overview of LARA, the Learning And Reading Assistant, an open source platform for easy creation and use of multimedia annotated texts designed to support the improvement of reading skills. The paper is divided into three parts. In the first, we give a brief summary of LARA’s processing. In the second, we describe some generic functionality specially relevant for reading assistance: support for phonetically annotated texts, support for image-based texts, and integrated production of text-to-speech (TTS) generated audio. In the third, we outline some of the larger projects so far carried out with LARA, involving development of content for learning second and foreign (L2) languages such as Icelandic, Farsi, Irish, Old Norse and the Australian Aboriginal language Barngarla, where the issues involved overlap with those that arise when trying to help students improve first-language (L1) reading skills. All software and almost all content is freely available.