John-Jose Nunez


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Comparing the Intrinsic Performance of Clinical Concept Embeddings by Their Field of Medicine
John-Jose Nunez | Giuseppe Carenini
Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)

Pre-trained word embeddings are becoming increasingly popular for natural language processing tasks. This includes medical applications, where embeddings are trained for clinical concepts using specific medical data. Recent work continues to improve on these embeddings. However, no one has yet sought to determine whether these embeddings work as well for one field of medicine as they do in others. In this work, we use intrinsic methods to evaluate embeddings from the various fields of medicine as defined by their ICD-9 systems. We find significant differences between fields, and motivate future work to investigate whether extrinsic tasks will follow a similar pattern.