Jiyun Chun


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
ARES: Alternating Reinforcement Learning and Supervised Fine-Tuning for Enhanced Multi-Modal Chain-of-Thought Reasoning Through Diverse AI Feedback
Ju-Seung Byun | Jiyun Chun | Jihyung Kil | Andrew Perrault
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Multimodal Models (LMMs) excel at comprehending human instructions and demonstrate remarkable results across a broad spectrum of tasks. Reinforcement Learning from Human Feedback (RLHF) and AI Feedback (RLAIF) further refine LLMs by aligning them with specific preferences. These methods primarily use ranking-based feedback for entire generations. With advanced AI models (Teacher), such as GPT-4 and Claude 3 Opus, we can request various types of detailed feedback that are expensive for humans to provide. We propose a two-stage algorithm ARES that Alternates REinforcement Learning (RL) and Supervised Fine-Tuning (SFT). First, we ask the Teacher to score how much each sentence contributes to solving the problem in a Chain-of-Thought (CoT). This sentence-level feedback allows us to consider individual valuable segments, providing more granular rewards for the RL procedure. Second, we ask the Teacher to correct wrong reasoning after the RL stage. The RL procedure requires substantial hyperparameter tuning and often generates errors such as repetitive words and incomplete sentences. With correction feedback, we stabilize the RL fine-tuned model through SFT. We conduct experiments on the multi-modal datasets ScienceQA and A-OKVQA to demonstrate the effectiveness of our proposal. The ARES rationale achieves around 70% win rate compared to baseline models judged by GPT-4o. Additionally, we observe that the improved rationale reasoning leads to a 2.5% increase in inference answer accuracy on average for the multi-modal datasets.