Jipeng Qiang

Other people with similar names: Jipeng Qiang

Unverified author pages with similar names: Jipeng Qiang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
ParaLS: Lexical Substitution via Pretrained Paraphraser
Jipeng Qiang | Kang Liu | Yun Li | Yunhao Yuan | Yi Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Lexical substitution (LS) aims at finding appropriate substitutes for a target word in a sentence. Recently, LS methods based on pretrained language models have made remarkable progress, generating potential substitutes for a target word through analysis of its contextual surroundings. However, these methods tend to overlook the preservation of the sentence’s meaning when generating the substitutes. This study explores how to generate the substitute candidates from a paraphraser, as the generated paraphrases from a paraphraser contain variations in word choice and preserve the sentence’s meaning. Since we cannot directly generate the substitutes via commonly used decoding strategies, we propose two simple decoding strategies that focus on the variations of the target word during decoding. Experimental results show that our methods outperform state-of-the-art LS methods based on pre-trained language models on three benchmarks.