This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JinzheLi
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The rapid advancement of scientific progress requires innovative tools that can accelerate knowledge discovery. Although recent AI methods, particularly large language models (LLMs), have shown promise in tasks such as hypothesis generation and experimental design, they fall short of replicating the collaborative nature of real-world scientific practices, where diverse experts work together in teams to tackle complex problems. To address the limitations, we propose an LLM-based multi-agent system, i.e., Virtual Scientists (VIRSCI), designed to mimic the teamwork inherent in scientific research. VIRSCI organizes a team of agents to collaboratively generate, evaluate, and refine research ideas. Through comprehensive experiments, we demonstrate that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas. We further investigate the collaboration mechanisms that contribute to its tendency to produce ideas with higher novelty, offering valuable insights to guide future research and illuminating pathways toward building a robust system for autonomous scientific discovery. The code is available at https://github.com/open-sciencelab/Virtual-Scientists.
Multi-turn instruction following capability constitutes a core competency of large language models (LLMs) in real-world applications. Existing evaluation benchmarks predominantly focus on fine-grained constraint satisfaction and domain-specific capability assessment, yet overlook the crucial structural dependencies between dialogue turns that distinguish multi-turn from single-turn interactions. These structural dependencies not only reflect user intent but also establish an essential second dimension for the instruction following evaluation beyond constraint satisfaction. To address this gap, we propose StructFlowBench, a multi-turn instruction following benchmark with structural flow modeling. The benchmark defines an innovative structural flow framework with six fundamental inter-turn relationships. These relationships introduce novel structural constraints for model evaluation and also serve as generation parameters for creating customized dialogue flows tailored to specific scenarios. Adopting established LLM-based automatic evaluation methodologies, we conduct systematic evaluations of 13 leading open-source and closed-source LLMs. Experimental results reveal significant deficiencies in current models’ comprehension of multi-turn dialogue structures. The code is available at https://github.com/MLGroupJLU/StructFlowBench.
Large language models (LLMs) have witnessed rapid advancements, demonstrating remarkable capabilities. However, a notable vulnerability persists: LLMs often uncritically accept flawed or contradictory premises, leading to inefficient reasoning and unreliable outputs. This emphasizes the significance of possessing the **Premise Critique Ability** for LLMs, defined as the capacity to proactively identify and articulate errors in input premises. Most existing studies assess LLMs’ reasoning ability in ideal settings, largely ignoring their vulnerabilities when faced with flawed premises. Thus, we introduce the **Premise Critique Bench (PCBench)**, designed by incorporating four error types across three difficulty levels, paired with multi-faceted evaluation metrics. We conducted systematic evaluations of 15 representative LLMs, Our findings reveal: (1) Most models rely heavily on explicit prompts to detect errors, with limited autonomous critique; (2) Premise critique ability depends on question difficulty and error type, with direct contradictions being easier to be detected than complex or procedural errors; (3) Reasoning ability does not consistently correlate with the premise critique ability; (4) Flawed premises trigger overthinking in reasoning models, markedly lengthening responses due to repeated attempts at resolving conflicts. These insights underscore the urgent need to enhance LLMs’ proactive evaluation of input validity, positioning premise critique as a foundational capability for developing reliable, human-centric systems.