This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
JinsungYoon
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Embedding models play a crucial role in machine learning. However, the continuous development of new models presents a major challenge: migrating to a potentially superior model often requires the computationally expensive process of re-embedding entire datasets—without any guarantee of performance improvement. This paper presents Embedding-Converter, a novel framework for efficiently transforming embeddings between different models, thus avoiding costly ‘re-embedding’. The proposed approach achieves 100 times faster and cheaper computations in real-world applications. Experiments show that Embedding-Converter not only streamlines transitions to new models, but can also improve upon the source model’s performance, approaching that of the target model. This facilitates efficient evaluation and broader adoption of new embedding models by significantly reducing the overhead of model switching. Furthermore, Embedding-Converter addresses latency limitations by enabling the use of smaller models for online tasks while still benefiting from the performance of larger models offline. By promoting the release of converters alongside new embedding models, Embedding-Converter fosters a more dynamic and accessible ecosystem for embedding model development and deployment.
Recent preference learning frameworks for large language models (LLMs) simplify human preferences with binary pairwise comparisons and scalar rewards. This simplification could make LLMs’ responses biased to mostly preferred features, and would be exacerbated during the iterations of online preference learning steps. To address these challenges, we propose a novel framework coined PFP (Preference Feature Preservation). The key idea of PFP is maintaining the distribution of human preference features and utilizing such rich signals throughout the online preference learning process. Specifically, PFP first extract preference features from offline pairwise human preference data and trains a feature classifier. Then, using trained classifier and the distribution preserving optimization, PFP maps appropriate preference features for a new input instruction during online learning. Lastly, PFP trains LLM using the existing preference learning method, by incorporating the preference feature into system prompts and enabling LLM to explicitly handle various human preferences. Our experiments demonstrate that PFP successfully mitigates the bias in preference features during online learning, and hence achieves superior performance compared to previous preference learning methods on standard benchmarks to evaluate LLM alignment.
Pre-trained retrieval models often face challenges in zero-shot retrieval for knowledge-based question answering, as different tasks rely on different corpora. We introduce SQUARE (Synthetic QUery-based Adaptive REtrieval), a novel method for corpus-specific unsupervised retrieval customization. SQUARE leverages LLMs to generate grounded synthetic question-answer pairs from the corpus, which are then used to fine-tune the retriever. A filtering mechanism based on the synthetic answers is employed to ensure high quality of tuning data. Extensive experiments on various datasets demonstrate superior performance of SQUARE compared to zero-shot retrieval and other customization methods, highlighting the value of corpus adaptation for effective retrieval.
Embeddings extracted by pre-trained Large Language Models (LLMs) have significant potential to improve information retrieval and search. Beyond the zero-shot setup in which they are being conventionally used, being able to take advantage of the information from the relevant query-corpus paired data can further boost the LLM capabilities. In this paper, we propose a novel method, Search-Adaptor, for customizing LLMs for information retrieval in an efficient and robust way. Search-Adaptor modifies the embeddings generated by pre-trained LLMs, and can be integrated with any LLM, including those only available via prediction APIs. On multiple English, multilingual, and multimodal retrieval datasets, we show consistent and significant performance benefits for Search-Adaptor – e.g., more than 5% improvements for Google Embedding APIs in nDCG@10 averaged over 14 BEIR datasets.
Embeddings from Large Language Models (LLMs) have emerged as critical components in various applications, particularly for information retrieval. While high-dimensional embeddings generally demonstrate superior performance as they contain more salient information, their practical application is frequently hindered by elevated computational latency and the associated higher cost. To address these challenges, we propose Matryoshka-Adaptor, a novel tuning framework designed for the customization of LLM embeddings. Matryoshka-Adaptor facilitates substantial dimensionality reduction while maintaining comparable performance levels, thereby achieving a significant enhancement in computational efficiency and cost-effectiveness. Our framework directly modifies the embeddings from pre-trained LLMs which is designed to be seamlessly integrated with any LLM architecture, encompassing those accessible exclusively through black-box APIs. Also, it exhibits efficacy in both unsupervised and supervised learning settings. A rigorous evaluation conducted across a diverse corpus of English, multilingual, and multimodal datasets consistently reveals substantial gains with Matryoshka-Adaptor. Notably, with Google and OpenAI Embedding APIs, Matryoshka-Adaptor achieves a reduction in dimensionality ranging from two- to twelve-fold without compromising performance across multiple BEIR datasets.
Recent advances in large language models (LLMs) have enabled autonomous agents with complex reasoning and task-fulfillment capabilities using a wide range of tools. However, effectively identifying the most relevant tools for a given task becomes a key bottleneck as the toolset size grows, hindering reliable tool utilization. To address this, we introduce Re-Invoke, an unsupervised tool retrieval method designed to scale effectively to large toolsets without training. Specifically, we first generate a diverse set of synthetic queries that comprehensively cover different aspects of the query space associated with each tool document during the tool indexing phase. Second, we leverage LLM’s query understanding capabilities to extract key tool-related context and underlying intents from user queries during the inference phase. Finally, we employ a novel multi-view similarity ranking strategy based on intents to pinpoint the most relevant tools for each query. Our evaluation demonstrates that Re-Invoke significantly outperforms state-of-the-art alternatives in both single-tool and multi-tool scenarios, all within a fully unsupervised setting. Notably, on the ToolE datasets, we achieve a 20% relative improvement in nDCG@5 for single-tool retrieval and a 39% improvement for multi-tool retrieval.
Large language models (LLMs) have recently shown great advances in a variety of tasks, including natural language understanding and generation. However, their use in high-stakes decision-making scenarios is still limited due to the potential for errors. *Selective prediction* is a technique that can be used to improve the reliability of the LLMs by allowing them to abstain from making predictions when they are unsure of the answer. In this work, we propose a novel framework for adaptation with self-evaluation to improve the selective prediction performance of LLMs. Our framework is based on the idea of using parameter-efficient tuning to adapt the LLM to the specific task at hand while improving its ability to perform self-evaluation. We evaluate our method on a variety of question-answering (QA) datasets and show that it outperforms state-of-the-art selective prediction methods. For example, on the CoQA benchmark, our method improves the AUACC from 91.23% to 92.63% and improves the AUROC from 74.61% to 80.25%.