Jinsil Lee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Deontological Keyword Bias: The Impact of Modal Expressions on Normative Judgments of Language Models
Bumjin Park | Jinsil Lee | Jaesik Choi
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) are increasingly engaging in moral and ethical reasoning, where criteria for judgment are often unclear, even for humans. While LLM alignment studies cover many areas, one important yet underexplored area is how LLMs make judgments about obligations. This work reveals a strong tendency in LLMs to judge non-obligatory contexts as obligations when prompts are augmented with modal expressions such as must or ought to. We introduce this phenomenon as Deontological Keyword Bias (DKB). We find that LLMs judge over 90% of commonsense scenarios as obligations when modal expressions are present. This tendency is consist across various LLM families, question types, and answer formats. To mitigate DKB, we propose a judgment strategy that integrates few-shot examples with reasoning prompts. This study sheds light on how modal expressions, as a form of linguistic framing, influence the normative decisions of LLMs and underscores the importance of addressing such biases to ensure judgment alignment.