Jingwen Cheng


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
REALM: A Dataset of Real-World LLM Use Cases
Jingwen Cheng | Kshitish Ghate | Wenyue Hua | William Yang Wang | Hong Shen | Fei Fang
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs), such as the GPT series, have driven significant industrial applications, leading to economic and societal transformations. However, a comprehensive understanding of their real-world applications remains limited.To address this, we introduce **REALM**, a dataset of over 94,000 LLM use cases collected from Reddit and news articles. **REALM** captures two key dimensions: the diverse applications of LLMs and the demographics of their users. It categorizes LLM applications and explores how users’ occupations relate to the types of applications they use.By integrating real-world data, **REALM** offers insights into LLM adoption across different domains, providing a foundation for future research on their evolving societal roles. An interactive dashboard ([https://realm-e7682.web.app/](https://realm-e7682.web.app/)) is provided for easy exploration of the dataset.